浙江工业大学物理学院
 所在位置:首页 > 博学堂讲座
博学堂讲座
Hölder regularity of harmonic functions on metric measure spaces (第789讲)
浏览量:265    发布时间:2024-08-09 17:42:06

报告题目:Hölder regularity of harmonic functions on metric measure spaces

报告人:杨甍 (德国波恩大学 豪斯多夫数学中心)

报告时间:2024年8月12日(星期一) 14:00

报告地点:理学楼A313

摘 要: 我们引入了度量测度空间上调和函数的Hölder正则条件,并证明了在底空间满足体积正则条件和热核上界的条件下,如下条件等价:Hölder正则条件、弱Bakry-Èmery非负曲率条件、热核Hölder连续性或没有指数项和热核近对角线下界。作为应用,首先,我们证明了所谓的广义逆 Hölder 不等式在 Sierpiński 电缆系统上的有效性,该问题由 Devyver、Russ、Yang 提出(Int. Math. Res. Not. IMRN (2023), no. 14)。 18, 15537–15583)。其次,我们证明了热核双边估计本身就意味着强循环分形电缆系统上热核的梯度估计,这改进了上述论文的主要结果。 第三,我们获得了一般度量测度空间上热核的 Hölder (Lipschitz) 估计,它扩展了黎曼流形上热核的经典 Li-Yau 梯度估计。这一报告主要基于与高晋的合作 (arXiv: 2407.20789)。


Abstract:We introduce the Hölder regularity condition for harmonic functions on metric measure spaces and prove that under mild volume regular condition and upper heat kernel estimate, the Hölder regularity condition, the weak Bakry-Èmery non-negative curvature condition, the heat kernel Hölder continuity with or without exponential terms and the heat kernel near-diagonal lower bound are equivalent. As applications, firstly, we prove the validity of the so-called generalized reverse Hölder inequality on the Sierpiński cable system, which was left open by Devyver, Russ, Yang (Int. Math. Res. Not. IMRN (2023), no. 18, 15537–15583). Secondly, we prove that two-sided heat kernel estimates alone imply gradient estimate for the heat kernel on strongly recurrent fractal-like cable systems, which improves the main results of the aforementioned paper. Thirdly, we obtain Hölder (Lipschitz) estimate for heat kernel on general metric measure spaces, which extends the classical Li-Yau gradient estimate for heat kernel on Riemannian manifolds. Based on a joint work with Jin Gao (arXiv: 2407.20789).


报告人简介:杨甍,男,汉,在波恩大学工作,博士后,博士毕业于清华大学和比勒菲尔德大学,研究方向是分形分析。已在国内外期刊杂志发表数篇论文,其中包括Trans. Amer. Math. Soc.,Int. Math. Res. Not. IMRN,Math. Z.等。


邀请人:调和分析讨论班


博学堂讲座
Hölder regularity of harmonic functions on metric measure spaces (第789讲)
浏览量:265    发布时间:2024-08-09 17:42:06

报告题目:Hölder regularity of harmonic functions on metric measure spaces

报告人:杨甍 (德国波恩大学 豪斯多夫数学中心)

报告时间:2024年8月12日(星期一) 14:00

报告地点:理学楼A313

摘 要: 我们引入了度量测度空间上调和函数的Hölder正则条件,并证明了在底空间满足体积正则条件和热核上界的条件下,如下条件等价:Hölder正则条件、弱Bakry-Èmery非负曲率条件、热核Hölder连续性或没有指数项和热核近对角线下界。作为应用,首先,我们证明了所谓的广义逆 Hölder 不等式在 Sierpiński 电缆系统上的有效性,该问题由 Devyver、Russ、Yang 提出(Int. Math. Res. Not. IMRN (2023), no. 14)。 18, 15537–15583)。其次,我们证明了热核双边估计本身就意味着强循环分形电缆系统上热核的梯度估计,这改进了上述论文的主要结果。 第三,我们获得了一般度量测度空间上热核的 Hölder (Lipschitz) 估计,它扩展了黎曼流形上热核的经典 Li-Yau 梯度估计。这一报告主要基于与高晋的合作 (arXiv: 2407.20789)。


Abstract:We introduce the Hölder regularity condition for harmonic functions on metric measure spaces and prove that under mild volume regular condition and upper heat kernel estimate, the Hölder regularity condition, the weak Bakry-Èmery non-negative curvature condition, the heat kernel Hölder continuity with or without exponential terms and the heat kernel near-diagonal lower bound are equivalent. As applications, firstly, we prove the validity of the so-called generalized reverse Hölder inequality on the Sierpiński cable system, which was left open by Devyver, Russ, Yang (Int. Math. Res. Not. IMRN (2023), no. 18, 15537–15583). Secondly, we prove that two-sided heat kernel estimates alone imply gradient estimate for the heat kernel on strongly recurrent fractal-like cable systems, which improves the main results of the aforementioned paper. Thirdly, we obtain Hölder (Lipschitz) estimate for heat kernel on general metric measure spaces, which extends the classical Li-Yau gradient estimate for heat kernel on Riemannian manifolds. Based on a joint work with Jin Gao (arXiv: 2407.20789).


报告人简介:杨甍,男,汉,在波恩大学工作,博士后,博士毕业于清华大学和比勒菲尔德大学,研究方向是分形分析。已在国内外期刊杂志发表数篇论文,其中包括Trans. Amer. Math. Soc.,Int. Math. Res. Not. IMRN,Math. Z.等。


邀请人:调和分析讨论班