浙江工业大学物理学院
 所在位置:首页 > 博学堂讲座
博学堂讲座
Wiener-Plancherel formulas for functions of polynomial growth (第758讲)
浏览量:385    发布时间:2024-03-25 10:10:43

报告题目: Wiener-Plancherel formulas for functions of polynomial growth

报告人:李中凯 教授(上海师范大学)

报告时间:2024年03月28日 周四 下午15:30---16:30

报告地点:腾讯会议 961 178 455

摘要:For most applications, the Plancherel formula undertakes the routine role of an effectual tool used to obtain quantitative results, but certainly, that is unsuited to non-square-integrable functions. Norbert Wiener ever proved a quantitative formula (Wiener-Plancherel formula) for functions f which are only averagely bounded, that is an equality of limits relating some kind of quadratic behavior of the associated functions. In a recent work, we generalize Wiener’s work and prove a Wiener-Plancherel-type formula for functions of polynomial growth at infinity.


报告人简介:李中凯,山东大学数学系本科毕业,1992年在大连理工大学取得博士学位,1997年破格晋升教授,现任上海师范大学教授,博士生导师,主要从事调和分析、函数逼近以及群上的分析和几何等领域的研究,已主持承担多项国家自然科学基金项目,曾被评为北京市青年学科带头人和北京市跨世纪人才,入选教育部优秀青年教师资助计划。在Adv. Math. 、J. Funct. Anal.、J. Fourier Anal. Appl.、J. Approx. Theory等国内外著名数学期刊上发表论文近50篇。


邀请人:金永阳

博学堂讲座
Wiener-Plancherel formulas for functions of polynomial growth (第758讲)
浏览量:385    发布时间:2024-03-25 10:10:43

报告题目: Wiener-Plancherel formulas for functions of polynomial growth

报告人:李中凯 教授(上海师范大学)

报告时间:2024年03月28日 周四 下午15:30---16:30

报告地点:腾讯会议 961 178 455

摘要:For most applications, the Plancherel formula undertakes the routine role of an effectual tool used to obtain quantitative results, but certainly, that is unsuited to non-square-integrable functions. Norbert Wiener ever proved a quantitative formula (Wiener-Plancherel formula) for functions f which are only averagely bounded, that is an equality of limits relating some kind of quadratic behavior of the associated functions. In a recent work, we generalize Wiener’s work and prove a Wiener-Plancherel-type formula for functions of polynomial growth at infinity.


报告人简介:李中凯,山东大学数学系本科毕业,1992年在大连理工大学取得博士学位,1997年破格晋升教授,现任上海师范大学教授,博士生导师,主要从事调和分析、函数逼近以及群上的分析和几何等领域的研究,已主持承担多项国家自然科学基金项目,曾被评为北京市青年学科带头人和北京市跨世纪人才,入选教育部优秀青年教师资助计划。在Adv. Math. 、J. Funct. Anal.、J. Fourier Anal. Appl.、J. Approx. Theory等国内外著名数学期刊上发表论文近50篇。


邀请人:金永阳