浙江工业大学物理学院
 所在位置:首页 > 博学堂讲座
博学堂讲座
Lax pairs informed neural networks solving integrable systems (第757讲)
浏览量:389    发布时间:2024-03-25 09:49:08

报告题目:Lax pairs informed neural networks solving integrable systems

报告人:陈勇 教授(华东师范大学)

报告时间:2024年03月25日 周一 上午09:00---10:00

报告地点:屏峰校区 广A205

摘 要:Lax pairs are one of the most important features of integrable system. In this talk, we propose the Lax pairs informed neural networks (LPINNs) tailored for integrable systems with Lax pairs by designing novel network architectures and loss functions, comprising LPINN-v1 and LPINN-v2. The most noteworthy advantage of LPINN-v1 is that it can transform the solving of complex integrable systems into the solving of a simpler Lax pairs to simplify the study of integrable systems, and it not only efficiently solves data-driven localized wave solutions, but also obtains spectral parameters and corresponding spectral functions in Lax pairs. On the basis of LPINN-v1, we additionally incorporate the compatibility condition/zero curvature equation of Lax pairs in LPINN-v2, its major advantage is the ability to solve and explore high-accuracy data-driven localized wave solutions and associated spectral problems for all integrable systems with Lax pairs. The numerical experiments in this work involve several important and classic low-dimensional and high-dimensional integrable systems, abundant localized wave solutions and their Lax pairs , including the soliton of the Korteweg-de Vries (KdV) equation and modified KdV equation, rogue wave solution of the nonlinear Schrodinger equation, kink solution of the sine-Gordon equation, non-smooth peakon solution of the Camassa-Holm equation and pulse solution of the short pulse equation, as well as the line-soliton solution Kadomtsev-Petviashvili equation and lump solution of high-dimensional KdV equation. The innovation of this work lies in the pioneering integration of Lax pairs informed of integrable systems into deep neural networks, thereby presenting a fresh methodology and pathway for investigating data-driven localized wave solutions and spectral problems of Lax pairs.

 

报告人简介:陈勇,华东师范大学 教授,博士生导师,上海市闵行区拔尖人才。长期从事非线性数学物理、可积系统、计算机代数及程序开发、可积深度学习算法、混沌理论、大气和海洋动力学等领域的研究工作。提出了一系列可以机械化实现非线性方程求解的方法,发展了李群理论并成功应用于大气海洋物理模型的研究。提出可积深度学习算法,开发出一系列可机械化实现的非线性发展方程的研究程序。已在SCI收录的国际学术期刊上发表SCI论文300余篇,引用7000余篇次。国家自然科学基金重点项目3(第一参加人和项目负责人)、国家自然科学基金面上项目4项(主持)、973项目1(骨干科学家)、国家自然科学基金长江创新团队项目2(PI)

 

邀请人:


博学堂讲座
Lax pairs informed neural networks solving integrable systems (第757讲)
浏览量:389    发布时间:2024-03-25 09:49:08

报告题目:Lax pairs informed neural networks solving integrable systems

报告人:陈勇 教授(华东师范大学)

报告时间:2024年03月25日 周一 上午09:00---10:00

报告地点:屏峰校区 广A205

摘 要:Lax pairs are one of the most important features of integrable system. In this talk, we propose the Lax pairs informed neural networks (LPINNs) tailored for integrable systems with Lax pairs by designing novel network architectures and loss functions, comprising LPINN-v1 and LPINN-v2. The most noteworthy advantage of LPINN-v1 is that it can transform the solving of complex integrable systems into the solving of a simpler Lax pairs to simplify the study of integrable systems, and it not only efficiently solves data-driven localized wave solutions, but also obtains spectral parameters and corresponding spectral functions in Lax pairs. On the basis of LPINN-v1, we additionally incorporate the compatibility condition/zero curvature equation of Lax pairs in LPINN-v2, its major advantage is the ability to solve and explore high-accuracy data-driven localized wave solutions and associated spectral problems for all integrable systems with Lax pairs. The numerical experiments in this work involve several important and classic low-dimensional and high-dimensional integrable systems, abundant localized wave solutions and their Lax pairs , including the soliton of the Korteweg-de Vries (KdV) equation and modified KdV equation, rogue wave solution of the nonlinear Schrodinger equation, kink solution of the sine-Gordon equation, non-smooth peakon solution of the Camassa-Holm equation and pulse solution of the short pulse equation, as well as the line-soliton solution Kadomtsev-Petviashvili equation and lump solution of high-dimensional KdV equation. The innovation of this work lies in the pioneering integration of Lax pairs informed of integrable systems into deep neural networks, thereby presenting a fresh methodology and pathway for investigating data-driven localized wave solutions and spectral problems of Lax pairs.

 

报告人简介:陈勇,华东师范大学 教授,博士生导师,上海市闵行区拔尖人才。长期从事非线性数学物理、可积系统、计算机代数及程序开发、可积深度学习算法、混沌理论、大气和海洋动力学等领域的研究工作。提出了一系列可以机械化实现非线性方程求解的方法,发展了李群理论并成功应用于大气海洋物理模型的研究。提出可积深度学习算法,开发出一系列可机械化实现的非线性发展方程的研究程序。已在SCI收录的国际学术期刊上发表SCI论文300余篇,引用7000余篇次。国家自然科学基金重点项目3(第一参加人和项目负责人)、国家自然科学基金面上项目4项(主持)、973项目1(骨干科学家)、国家自然科学基金长江创新团队项目2(PI)

 

邀请人: