报告题目:The Degasperis-Procesi equation on the line: Soliton resolution, asymptotic stability of N-solitons, Painleve and Airy asymptotics
报告人:范恩贵 教授(复旦大学)
报告时间:2024年03月25日(周一)上午10:00---11:00
报告地点:屏峰校区 广A205
摘 要:The Degasperis-Procesi (DP) equation as a model to describe the propagation of shallow water waves, is a completely integrable system and admits a 3×3 matrix Lax pair. In this paper, for the Cauchy problem of the DP equation for generic initial data in Schwarz space that can support solitons, we give a full description of the long-time asymptotics for the DP equation in the whole upper half-plane (x,t) in R. Using the generalization of the Deift-Zhou nonlinear steepest descent method and a double limit technique, we derive the leading order approximation to the solution u(x,t) of the DP equation for large times in the following three types of space-time regions.
报告人简介:范恩贵,复旦大学教授、博士生导师、上海市曙光学者,主要研究方向:可积系统和反散射理论;主持国家自然科学基金、上海曙光计划等多项研究课题。 在 《Adv. Math.》、 《Comm. Math. Phys.》、《SIAM J. Math. Anal.》、《J. Diff. Equ.》等国际重要期刊发表论文150余篇。应邀访问美国密苏里大学、密西根州立大学、德克萨斯大学、日本京都大学、香港大学等。曾获教育部自然科学二等奖、上海市自然科学二等奖、复旦大学谷超豪数学奖。
邀请人:任 博