浙江工业大学物理学院
 所在位置:首页 > 博学堂讲座
博学堂讲座
Rational and semi-rational solutions of integrable differential-difference equations (第750讲)
浏览量:465    发布时间:2024-01-11 13:14:57

报告题目:Rational and semi-rational solutions of integrable differential-difference equations

报告人:虞国富 教授(上海交通大学)

报告时间:2024年1月12日(周五)10:30-11:30

报告地点:广A304

摘要:Recently, rational solutions of integrable differential equations have attracted much attention. In this talk, we will first present a review on the application of Hirota's bilinear method in the construction of rational and semi-rational solutions of integrable equations. Then we investigate a special two-dimensional lattice equation proposed by Blaszak and Szum and so-called Leznov lattice equation based on Hirota's bilinear method. We derive solitons, breathers and rational solutions to the lattice equations both on the constant and periodic backgrounds. These solutions are given in terms of determinants whose matrix elements have simple algebraic expressions. We show that rational solutions can also be presented in terms of Schur polynomials. We demonstrate that these rational solutions exhibit algebraic solitons and lump solitons. We explore the asymptotic analysis to the algebraic solitons.

 

报告人简介:虞国富,上海交通大学教授、博士生导师。2007年博士毕业于中国科学院数学与系统科学研究院,加拿大蒙特利尔大学博士后。主要从事孤立子与可积系统、正交多项式等方面的研究。在数学物理领域学术刊物Adv. Math.,Nonlinearity,Physica D,JNS等发表论文60余篇。主持国家自然科学基金、上海市晨光计划、上海交通大学晨星青年学者奖励计划等多项研究课题。


邀请人:赵松林




博学堂讲座
Rational and semi-rational solutions of integrable differential-difference equations (第750讲)
浏览量:465    发布时间:2024-01-11 13:14:57

报告题目:Rational and semi-rational solutions of integrable differential-difference equations

报告人:虞国富 教授(上海交通大学)

报告时间:2024年1月12日(周五)10:30-11:30

报告地点:广A304

摘要:Recently, rational solutions of integrable differential equations have attracted much attention. In this talk, we will first present a review on the application of Hirota's bilinear method in the construction of rational and semi-rational solutions of integrable equations. Then we investigate a special two-dimensional lattice equation proposed by Blaszak and Szum and so-called Leznov lattice equation based on Hirota's bilinear method. We derive solitons, breathers and rational solutions to the lattice equations both on the constant and periodic backgrounds. These solutions are given in terms of determinants whose matrix elements have simple algebraic expressions. We show that rational solutions can also be presented in terms of Schur polynomials. We demonstrate that these rational solutions exhibit algebraic solitons and lump solitons. We explore the asymptotic analysis to the algebraic solitons.

 

报告人简介:虞国富,上海交通大学教授、博士生导师。2007年博士毕业于中国科学院数学与系统科学研究院,加拿大蒙特利尔大学博士后。主要从事孤立子与可积系统、正交多项式等方面的研究。在数学物理领域学术刊物Adv. Math.,Nonlinearity,Physica D,JNS等发表论文60余篇。主持国家自然科学基金、上海市晨光计划、上海交通大学晨星青年学者奖励计划等多项研究课题。


邀请人:赵松林