报告题目:A DCA-Newton method for quartic minimization over the sphere
报告人:胡胜龙 教授(杭州电子科技大学)
报告时间:2023年12月12日上午10点
报告地点:理A110
摘要:In this talk, a method for quartic minimization over the sphere is studied. It is based on an equivalent difference of convex (DC) reformulation of this problem in the matrix variable. This derivation also induces a global optimality certification for the quartic minimization over the sphere. An algorithm with the subproblem being solved by a semismooth Newton method is then proposed for solving the quartic minimization problem. Global convergence and linear convergence rate for this algorithm are established under mild assumptions. The efficiency of this algorithm and the global optimality certification are illustrated by numerical experiments.
个人简介:胡胜龙,杭州电子科技大学理学院教授,博士研究生导师。先后毕业于天津大学和香港理工大学。中国青年科技工作者协会成员、中国运筹学会理事、数学规划分会理事、浙江省数学会理事。研究方向为张量计算的理论与算法及其应用。证明了张量最佳秩一逼近经典幂法和张量正交低秩逼近经典交替极分解法的线性收敛性,解决了Yousef Saad等提出的公开问题。部分研究成果发表在Math Program、Num Math、SIMAX、J Symb Comput等期刊。获得天津市数学会青年研究奖、Sci China-Math优秀论文奖、浙江省数学会研究成果奖等。主持国家自然科学基金和浙江省自然科学基金多项。
邀请人:李欣