浙江工业大学物理学院
 所在位置:首页 > 博学堂讲座
博学堂讲座
Large-time behaviors of the focusing NLS equation with nonzero boundary conditions at infinity (第729讲)
浏览量:415    发布时间:2023-11-16 17:39:51

报告题目:Large-time behaviors of the focusing NLS equation with nonzero boundary conditions at infinity

报告人:王灯山 教授(北京师范大学)

报告时间:2023年11月21日(周二)上午10:00-11:00

报告地点:腾讯会议:387-990-985

报告摘要:We report our recent work on the large-time behaviors of the focusing NLS equation with two kinds of non-zero boundary conditions at infinity. One kind is the rarefaction problem and the other is step-like initial-value problem with vanishing boundary on one side. The analytic region of the reflection coefficient is found by studying the convergence of the Volterra integral equations. All possible locations of double poles associated with the spectral functions are established and five sectors are classified for each non-zero boundary condition, such as the dumbing sector, trapping sector, trapping/waking sector, transmitting/waking sector and transmitting sector. The long-time asymptotic behaviors for each sector are analyzed by Deift-Zhou nonlinear steepest-descent strategy for Riemann-Hilbert problems. This is a joint work with Dinghao Zhu. 


报告人简介:王灯山,北京师范大学数学科学学院,教授、博士生导师。主要从事可积系统和渐近分析方面的研究,在Analysis & PDE, Physical Review Letters, J. Differential Equations, J. Nonlinear Science Physica D等国际期刊发表学术论文90余篇,主持国家自然科学基金面上项目等国家级和省部级项目10余项,曾获北京市自然科学奖二等奖(第一完成人)和茅以升北京青年科技奖,并参与获得北京市科学技术奖一等奖。入选北京市科技新星计划、北京市高创计划青年拔尖人才、北京市长城学者计划以及爱思唯尔2020-2022年中国高被引学者。

博学堂讲座
Large-time behaviors of the focusing NLS equation with nonzero boundary conditions at infinity (第729讲)
浏览量:415    发布时间:2023-11-16 17:39:51

报告题目:Large-time behaviors of the focusing NLS equation with nonzero boundary conditions at infinity

报告人:王灯山 教授(北京师范大学)

报告时间:2023年11月21日(周二)上午10:00-11:00

报告地点:腾讯会议:387-990-985

报告摘要:We report our recent work on the large-time behaviors of the focusing NLS equation with two kinds of non-zero boundary conditions at infinity. One kind is the rarefaction problem and the other is step-like initial-value problem with vanishing boundary on one side. The analytic region of the reflection coefficient is found by studying the convergence of the Volterra integral equations. All possible locations of double poles associated with the spectral functions are established and five sectors are classified for each non-zero boundary condition, such as the dumbing sector, trapping sector, trapping/waking sector, transmitting/waking sector and transmitting sector. The long-time asymptotic behaviors for each sector are analyzed by Deift-Zhou nonlinear steepest-descent strategy for Riemann-Hilbert problems. This is a joint work with Dinghao Zhu. 


报告人简介:王灯山,北京师范大学数学科学学院,教授、博士生导师。主要从事可积系统和渐近分析方面的研究,在Analysis & PDE, Physical Review Letters, J. Differential Equations, J. Nonlinear Science Physica D等国际期刊发表学术论文90余篇,主持国家自然科学基金面上项目等国家级和省部级项目10余项,曾获北京市自然科学奖二等奖(第一完成人)和茅以升北京青年科技奖,并参与获得北京市科学技术奖一等奖。入选北京市科技新星计划、北京市高创计划青年拔尖人才、北京市长城学者计划以及爱思唯尔2020-2022年中国高被引学者。