浙江工业大学物理学院
 所在位置:首页 > 博学堂讲座
博学堂讲座
Solutions to the SU(N) self-dual Yang-Mills equation (第706讲)
浏览量:202    发布时间:2023-10-09 09:36:19

报告题目:Solutions to the SU(N) self-dual Yang-Mills equation

报告人:李上帅 博士(上海大学)

报告时间:2023年10月10日(周二)14:30-15:30

报告地点:广B209

报告摘要:In this talk we present a set of non-commutative relations to construct a matrix equation that can be reduced to the SDYM equation. It shows that these relations can be generated from two different Sylvester equations, which correspond to the two Cauchy matrix schemes for the (matrix) Kadomtsev-Petviashvili hierarchy and the (matrix) Ablowitz-Kaup-Newell-Segur hierarchy, respectively. In both schemes, they allow for suitable reductions to obtain solutions with physical meanings. This is a joint work with Da-jun Zhang and Chang-zheng Qu.


报告人简介:李上帅,上海大学数学系博士生,研究方向为可积系统。近年来主要从事可积系统中的直接线性化理论及其应用的研究。相关结果发表在《Stud. Appl. Math.》、《Physica D》及《J. Phys. A》等数学物理期刊。

博学堂讲座
Solutions to the SU(N) self-dual Yang-Mills equation (第706讲)
浏览量:202    发布时间:2023-10-09 09:36:19

报告题目:Solutions to the SU(N) self-dual Yang-Mills equation

报告人:李上帅 博士(上海大学)

报告时间:2023年10月10日(周二)14:30-15:30

报告地点:广B209

报告摘要:In this talk we present a set of non-commutative relations to construct a matrix equation that can be reduced to the SDYM equation. It shows that these relations can be generated from two different Sylvester equations, which correspond to the two Cauchy matrix schemes for the (matrix) Kadomtsev-Petviashvili hierarchy and the (matrix) Ablowitz-Kaup-Newell-Segur hierarchy, respectively. In both schemes, they allow for suitable reductions to obtain solutions with physical meanings. This is a joint work with Da-jun Zhang and Chang-zheng Qu.


报告人简介:李上帅,上海大学数学系博士生,研究方向为可积系统。近年来主要从事可积系统中的直接线性化理论及其应用的研究。相关结果发表在《Stud. Appl. Math.》、《Physica D》及《J. Phys. A》等数学物理期刊。