浙江工业大学物理学院
 所在位置:首页 > 博学堂讲座
博学堂讲座
A bidirectional fifth order partial differential equation and its integrability (第701讲)
浏览量:217    发布时间:2023-10-06 08:53:51

报告题目:A bidirectional fifth order partial differential equation and its integrability

报告人:刘青平 教授 (中国矿业大学)

报告时间:2023年10月6日(周五)15:00-16:00

报告地点:仁和106

摘要:In this talk, we consider a bidirectional fifth-order partial differential equation. By means of the prolongation structure method of Wahlquist and Estabrook, we construct a Lax representation for this equation. This enables us to confirm its integrability and identify it as the potential second order flow in a Gelfand-Dickey hierarchy. We also use Darboux transformation and present the multi-soliton solutions in Wronskian form. Finally, we comment on a more general bidirectional partial differential equation.

 

报告人简历:刘青平,中国矿业大学(北京)理学院教授,博士生导师,1992年博士毕业于英国LEEDS大学,2004-2019年期间担任中国矿业大学(北京)理学院院长,2002年入选教育部跨世纪优秀人才培养计划2007年获北京市高等学校教学名师,2007年享受国务院政府特殊津贴,2017年获得北京市高等教育一等奖。研究领域为可积系统理论,研究内容包括:可积系统的Hamilton理论,Darboux变换,超对称可积,可积系统与w代数等。在Communications in Mathematical Physics, Physics Letters B, Nonlinearity, Journal of Nonlinear Science, Inverse Problem等杂志发表多篇论文。


邀请人:沈守枫 教授

博学堂讲座
A bidirectional fifth order partial differential equation and its integrability (第701讲)
浏览量:217    发布时间:2023-10-06 08:53:51

报告题目:A bidirectional fifth order partial differential equation and its integrability

报告人:刘青平 教授 (中国矿业大学)

报告时间:2023年10月6日(周五)15:00-16:00

报告地点:仁和106

摘要:In this talk, we consider a bidirectional fifth-order partial differential equation. By means of the prolongation structure method of Wahlquist and Estabrook, we construct a Lax representation for this equation. This enables us to confirm its integrability and identify it as the potential second order flow in a Gelfand-Dickey hierarchy. We also use Darboux transformation and present the multi-soliton solutions in Wronskian form. Finally, we comment on a more general bidirectional partial differential equation.

 

报告人简历:刘青平,中国矿业大学(北京)理学院教授,博士生导师,1992年博士毕业于英国LEEDS大学,2004-2019年期间担任中国矿业大学(北京)理学院院长,2002年入选教育部跨世纪优秀人才培养计划2007年获北京市高等学校教学名师,2007年享受国务院政府特殊津贴,2017年获得北京市高等教育一等奖。研究领域为可积系统理论,研究内容包括:可积系统的Hamilton理论,Darboux变换,超对称可积,可积系统与w代数等。在Communications in Mathematical Physics, Physics Letters B, Nonlinearity, Journal of Nonlinear Science, Inverse Problem等杂志发表多篇论文。


邀请人:沈守枫 教授