报告题目:Regularities and Exponential Ergodicity in Entropy for SDEs Driven by Distribution Dependent Noise
报告人:黄兴副教授(天津大学应用数学中心)
报告时间:2023年4月23日15:15—16:00
报告地点:理A110
报告摘要:As two crucial tools characterizing regularity properties of stochastic systems, the log-Harnack inequality and Bismut formula have been intensively studied for distribution dependent (McKean-Vlasov) SDEs. However, due to technical difficulties, existing results mainly focus on the case with distribution free noise.
In this paper, we introduce a noise decomposition argument to establish the log-Harnack inequality and Bismut formula for SDEs with distribution dependent noise, in both non-degenerate and degenerate situations. As application, the exponential ergodicity in entropy is investigated.
报告人简介:黄兴,2017年博士毕业北京师范大学概率论与数理统计专业,师从王凤雨教授,现为天津大学应用数学中心副教授。研究方向:随机分析。最近关注分布依赖的随机微分方程的解的适定性,混沌传播现象和分布性质如正则性估计和Harnack不等式等。
邀请人:朱佳惠