浙江工业大学物理学院
 所在位置:首页 > 博学堂讲座
博学堂讲座
Regularities and Exponential Ergodicity in Entropy for SDEs Driven by Distribution Dependent Noise (第664讲)
浏览量:429    发布时间:2023-04-23 09:06:51

报告题目:Regularities and Exponential Ergodicity in Entropy for SDEs Driven by Distribution Dependent Noise

报告人:黄兴副教授(天津大学应用数学中心)

报告时间:2023年4月23日15:15—16:00

报告地点:理A110

报告摘要:As two crucial tools characterizing regularity properties of stochastic systems, the  log-Harnack inequality and Bismut formula have been intensively studied for distribution dependent (McKean-Vlasov) SDEs. However, due to technical difficulties, existing results mainly focus on the case with distribution free noise.

In this paper, we introduce a noise decomposition argument to establish the log-Harnack inequality and Bismut formula for SDEs with distribution dependent noise, in both non-degenerate and degenerate situations. As application, the exponential ergodicity in entropy  is investigated.

报告人简介:黄兴,2017年博士毕业北京师范大学概率论与数理统计专业,师从王凤雨教授,现为天津大学应用数学中心副教授。研究方向:随机分析。最近关注分布依赖的随机微分方程的解的适定性,混沌传播现象和分布性质如正则性估计和Harnack不等式等。

邀请人:朱佳惠

博学堂讲座
Regularities and Exponential Ergodicity in Entropy for SDEs Driven by Distribution Dependent Noise (第664讲)
浏览量:429    发布时间:2023-04-23 09:06:51

报告题目:Regularities and Exponential Ergodicity in Entropy for SDEs Driven by Distribution Dependent Noise

报告人:黄兴副教授(天津大学应用数学中心)

报告时间:2023年4月23日15:15—16:00

报告地点:理A110

报告摘要:As two crucial tools characterizing regularity properties of stochastic systems, the  log-Harnack inequality and Bismut formula have been intensively studied for distribution dependent (McKean-Vlasov) SDEs. However, due to technical difficulties, existing results mainly focus on the case with distribution free noise.

In this paper, we introduce a noise decomposition argument to establish the log-Harnack inequality and Bismut formula for SDEs with distribution dependent noise, in both non-degenerate and degenerate situations. As application, the exponential ergodicity in entropy  is investigated.

报告人简介:黄兴,2017年博士毕业北京师范大学概率论与数理统计专业,师从王凤雨教授,现为天津大学应用数学中心副教授。研究方向:随机分析。最近关注分布依赖的随机微分方程的解的适定性,混沌传播现象和分布性质如正则性估计和Harnack不等式等。

邀请人:朱佳惠