浙江工业大学物理学院
 所在位置:首页 > 博学堂讲座
博学堂讲座
The decay estimates of higher order elliptic operator (第658讲)
浏览量:532    发布时间:2023-03-15 19:42:42

报告题目:The decay estimates of higher order elliptic operator

报告人:尧小华(华中师范大学)

报告时间:2022年3月17日15:30—16:30

报告地点:理A110

报告摘要:It

报告摘要:It was well-known that the $L^p$ decay estimates of Schrödinger operators, is a widely studied topic, which plays an important role in the well-posedness of nonlinear dispersive equations and the long time (asymptotic) stability of solitary waves. In this talk, I will review some recent works on the time decay estimates of the higher order elliptic operators (poly-harmonic type) with the decay potentials. The main techniques based on the detailed analysis of free resolvent and spectral perturbation, where the classifications of zero resonances and zero asymptotic expansions of resolvent are the most important parts, which are indispensable to establish all kinds of dispersive results with general potentials.

报告人简介:尧小华,华中师范大学数学与统计学学院教授,博士生导师;教育部新世纪人才支持计划入选者。主要从事调和分析与微分算子的研究,围绕薛定谔算子的色散估计、孤立子的稳定性等问题开展科研工作,论文发表在Comm. Math. Phys.、Trans.  AMS.、Ann. H. Poincare、J. Funct. Anal.等国际数学期刊上。连续主持国家基金委面上项目3项,曾主持教育部重点项目1项,参与了教育部偏微分方程长江学者创新团队的建设。学术上先后访问过美国Johns Hopkins大学、普林斯顿高等研究所、新泽西罗格斯大学等高校。

邀请人:苏一鸣


博学堂讲座
The decay estimates of higher order elliptic operator (第658讲)
浏览量:532    发布时间:2023-03-15 19:42:42

报告题目:The decay estimates of higher order elliptic operator

报告人:尧小华(华中师范大学)

报告时间:2022年3月17日15:30—16:30

报告地点:理A110

报告摘要:It

报告摘要:It was well-known that the $L^p$ decay estimates of Schrödinger operators, is a widely studied topic, which plays an important role in the well-posedness of nonlinear dispersive equations and the long time (asymptotic) stability of solitary waves. In this talk, I will review some recent works on the time decay estimates of the higher order elliptic operators (poly-harmonic type) with the decay potentials. The main techniques based on the detailed analysis of free resolvent and spectral perturbation, where the classifications of zero resonances and zero asymptotic expansions of resolvent are the most important parts, which are indispensable to establish all kinds of dispersive results with general potentials.

报告人简介:尧小华,华中师范大学数学与统计学学院教授,博士生导师;教育部新世纪人才支持计划入选者。主要从事调和分析与微分算子的研究,围绕薛定谔算子的色散估计、孤立子的稳定性等问题开展科研工作,论文发表在Comm. Math. Phys.、Trans.  AMS.、Ann. H. Poincare、J. Funct. Anal.等国际数学期刊上。连续主持国家基金委面上项目3项,曾主持教育部重点项目1项,参与了教育部偏微分方程长江学者创新团队的建设。学术上先后访问过美国Johns Hopkins大学、普林斯顿高等研究所、新泽西罗格斯大学等高校。

邀请人:苏一鸣