报告题目:Hardy-Sobolev-Maz'ya inequality for polyharmonic operators and related problems
报告人:杨乔华(武汉大学)
报告时间:2022年12月22日(周四)15:00-16:00
报告地点:腾讯会议: 658-279-275
摘要:In this talk we will discuss some recent progress of Hardy-Sobolev-Maz'ya inequality on $mathbb{R}^{n+m}setminus mathbb{R}^{n}$. Such inequality is related to the GJMS operators on hyperbolic spaces. By using the Helgason-Fourier analysis techniques on hyperbolic spaces and Green’s function estimates, we present a proof in a unified way that the sharp constant in the (n-1)/2-th order Poincar'e-Sobolev inequalities of dimension n coincides with the best Sobolev constant, while the sharp constants of other cases are strictly less than the corresponding best Sobolev constants. we will also discuss some related problems. This talk is based on a joint work with Guozhen Lu.
报告人简介:杨乔华, 武汉大学数学与统计学院副教授,主要从事调和分析及其应用方面的研究。特别是在最佳分析不等式及其应用方面做出了很多出色的成果,这些成果已经发表在Adv. Math., Trans AMS, Amer. J. Math. Calc. Var. Partial Differential Equations, J. Geom. Anal. 等国际著名期刊。
邀请人:金永阳,曹军