报告题目:q-Symplectic Ensemble and Corresponding Skew Orthogonal Polynomials Theory
报告人:李世豪
报告时间:10月17日下午2:30-3:10
报告地点:尚德园12幢227室
报告题目:q-Symplectic Ensemble and Corresponding Skew Orthogonal Polynomials Theory
报告人:李世豪
时间:10月17日下午2:30-3:10
地点:尚德园12幢227室
In this talk, I'd like to present some results about the q-symplectic ensemble and corresponding skew orthogonal polynomials theory. The q-symplectic ensemble is an interesting random matrix model introduced by many branches of modern mathematical physics. For example, it could be viewed as a log-gas model in discrete space. I will demonstrate: (1) What's the characteristic poly-nomials behind the q-symplectic ensemble; (2) How to make use of the classical q-orthogonal polynomials theory to obtain the property of q-skew orthogonal polynomials; (3) The kernel of the q-symplectic ensemble could be expressed in terms of q-orthogonal polynomials, and therefore facilitate the analysis of the kernel. This work is collaborated with Peter J Forrester.
个人简介:
李世豪,2018年于中国科学院数学与系统科学研究院获得理学博士学位,博士期间荣获国家奖学金,博士论文获得新世界优秀提名奖。博士毕业后在墨尔本大学从事博士后研究。专业方向为数学物理,尤其是可积系统,随机矩阵理论与特殊函数理论的研究。研究结果发表在Comm. Math. Phys., Adv. Math., Trans. AMS, IMRN, J. Nonlinear Sci., Nonlinearity, J. Diff. Equations等期刊上。

