浙江工业大学物理学院
 所在位置:首页 > 博学堂讲座
博学堂讲座
Tau function of C-Toda lattice and Cauchy two-matrix model (第493讲)
浏览量:799    发布时间:2020-10-14 13:11:39

报告题目:Tau function of C-Toda lattice and Cauchy two-matrix model

报告人:李世豪

报告时间:10月15日上午10:40-11:20

报告地点:健A105

 

报告题目Tau function of C-Toda lattice and Cauchy two-matrix model

报告人:李世豪

时间:10月15日上午1040-11:20

地点:健A105

Abstract:

Matrix models and Toda-type lattices have been an intriguing topic for years. In this talk, I'd like to present a novel Toda-type lattice which was found during the studies of the Cauchy two-matrix model. With the help of Cauchy bi-orthogonal polynomials, the Lax pair of the Toda-type lattice is provided and thus presents the integrability. Moreover, I'd like to show an integrable discretization of this lattice by the Hirota's method and give a determinant solution to the discrete CKP equation. If time is permitted, I'd like to demonstrate how to obtain the C-Toda hierarchy from the 2d-Toda hierarchy. Some ongoing projects will be illustrated at the end.

个人简介:

李世豪,2018年于中国科学院数学与系统科学研究院获得理学博士学位,博士期间荣获国家奖学金,博士论文获得新世界优秀提名奖。博士毕业后在墨尔本大学从事博士后研究。专业方向为数学物理,尤其是可积系统,随机矩阵理论与特殊函数理论的研究。研究结果发表在Comm. Math. Phys., Adv. Math., Trans. AMS, IMRN, J. Nonlinear Sci., Nonlinearity, J. Diff. Equations等期刊上。

博学堂讲座
Tau function of C-Toda lattice and Cauchy two-matrix model (第493讲)
浏览量:799    发布时间:2020-10-14 13:11:39

报告题目:Tau function of C-Toda lattice and Cauchy two-matrix model

报告人:李世豪

报告时间:10月15日上午10:40-11:20

报告地点:健A105

 

报告题目Tau function of C-Toda lattice and Cauchy two-matrix model

报告人:李世豪

时间:10月15日上午1040-11:20

地点:健A105

Abstract:

Matrix models and Toda-type lattices have been an intriguing topic for years. In this talk, I'd like to present a novel Toda-type lattice which was found during the studies of the Cauchy two-matrix model. With the help of Cauchy bi-orthogonal polynomials, the Lax pair of the Toda-type lattice is provided and thus presents the integrability. Moreover, I'd like to show an integrable discretization of this lattice by the Hirota's method and give a determinant solution to the discrete CKP equation. If time is permitted, I'd like to demonstrate how to obtain the C-Toda hierarchy from the 2d-Toda hierarchy. Some ongoing projects will be illustrated at the end.

个人简介:

李世豪,2018年于中国科学院数学与系统科学研究院获得理学博士学位,博士期间荣获国家奖学金,博士论文获得新世界优秀提名奖。博士毕业后在墨尔本大学从事博士后研究。专业方向为数学物理,尤其是可积系统,随机矩阵理论与特殊函数理论的研究。研究结果发表在Comm. Math. Phys., Adv. Math., Trans. AMS, IMRN, J. Nonlinear Sci., Nonlinearity, J. Diff. Equations等期刊上。