浙江工业大学物理学院
 所在位置:首页 > 博学堂讲座
博学堂讲座
Zermelo navigation on Riemannian manifolds and dually flat Randers metrics (第489讲)
浏览量:1554    发布时间:2020-01-13 08:14:07

报告题目:Zermelo navigation on Riemannian manifolds and dually flat Randers metrics

报告人:莫小欢教授

报告时间:上午 10:00-11:00

报告地点:理A110

报告题目:  Zermelo navigation on Riemannian manifolds and dually flat Randers metrics

报告摘要:Randers metrics are natural and important Finsler metrics. In this lecture we review recent results in Randers geometry. In particular, we construct explicitly all dually flat Randers metrics by using the bijection between Randers metrics and their navigation representation.
报告人:莫小欢教授    北京大学
报告时间:  2020年1月15日上午   10:00-11:00 

报告地点:理A110.

报告题目: Funk functions and constructions of dually flat Finsler metrics

报告摘要:Dually flat Finsler metrics arise from $alpha$-flat information structures on Riemann-Finsler manifolds. Inspired by the theory of Funk functions and Hamel functions due to Li-Shen, we give a new approach to produce dually flat Finsler metrics in this lecture. Moreover, we manufacture new dually flat spherically symmetric Finsler metrics by using the standard Euclidean norm on $mathbb{R}^n$.

博学堂讲座
Zermelo navigation on Riemannian manifolds and dually flat Randers metrics (第489讲)
浏览量:1554    发布时间:2020-01-13 08:14:07

报告题目:Zermelo navigation on Riemannian manifolds and dually flat Randers metrics

报告人:莫小欢教授

报告时间:上午 10:00-11:00

报告地点:理A110

报告题目:  Zermelo navigation on Riemannian manifolds and dually flat Randers metrics

报告摘要:Randers metrics are natural and important Finsler metrics. In this lecture we review recent results in Randers geometry. In particular, we construct explicitly all dually flat Randers metrics by using the bijection between Randers metrics and their navigation representation.
报告人:莫小欢教授    北京大学
报告时间:  2020年1月15日上午   10:00-11:00 

报告地点:理A110.

报告题目: Funk functions and constructions of dually flat Finsler metrics

报告摘要:Dually flat Finsler metrics arise from $alpha$-flat information structures on Riemann-Finsler manifolds. Inspired by the theory of Funk functions and Hamel functions due to Li-Shen, we give a new approach to produce dually flat Finsler metrics in this lecture. Moreover, we manufacture new dually flat spherically symmetric Finsler metrics by using the standard Euclidean norm on $mathbb{R}^n$.