浙江工业大学物理学院
 所在位置:首页 > 博学堂讲座
博学堂讲座
Singular value statistics for the spiked elliptic Ginibre ensemble (第394讲)
浏览量:1078    发布时间:2018-12-18 09:12:49

报告题目:Singular value statistics for the spiked elliptic Ginibre ensemble

报告人:刘党政

报告时间:15:30--16:30

报告地点:理学楼 A 楼 二楼教师活动中心

  题目:Singular value statistics for the spiked elliptic Ginibre ensemble


报告人:  刘党政(中国科学技术大学 )
报告时间:12月20日(周四)15:30--16:30
报告地点:理学楼 A 楼 二楼教师活动中心
    
摘要:The complex elliptic Ginibre ensemble is a random matrix model interpolating between the Gaussian unitary ensemble and the Ginibre ensemble. Its eigenvalues form a determinantal point process in the complex plane, however, until recently its singular values had been proved to build a Pfaffian point process (Kanazawa and Kieburg, arXiv:1804.03985). In this talk we consider an extended interpolating ensemble with singular values changing from the elliptic ensemble to the spiked Wishart ensemble.  We prove that the singular values still build a Pfaffian point process and further derive a double contour integral for the correlation kernel.  This is based on joint work with Yanhui Wang, Henan University. 

个人简介:刘党政,中国科学技术大学副教授。2010年博士毕业于北京大学,研究方向随机矩阵理论 。 
博学堂讲座
Singular value statistics for the spiked elliptic Ginibre ensemble (第394讲)
浏览量:1078    发布时间:2018-12-18 09:12:49

报告题目:Singular value statistics for the spiked elliptic Ginibre ensemble

报告人:刘党政

报告时间:15:30--16:30

报告地点:理学楼 A 楼 二楼教师活动中心

  题目:Singular value statistics for the spiked elliptic Ginibre ensemble


报告人:  刘党政(中国科学技术大学 )
报告时间:12月20日(周四)15:30--16:30
报告地点:理学楼 A 楼 二楼教师活动中心
    
摘要:The complex elliptic Ginibre ensemble is a random matrix model interpolating between the Gaussian unitary ensemble and the Ginibre ensemble. Its eigenvalues form a determinantal point process in the complex plane, however, until recently its singular values had been proved to build a Pfaffian point process (Kanazawa and Kieburg, arXiv:1804.03985). In this talk we consider an extended interpolating ensemble with singular values changing from the elliptic ensemble to the spiked Wishart ensemble.  We prove that the singular values still build a Pfaffian point process and further derive a double contour integral for the correlation kernel.  This is based on joint work with Yanhui Wang, Henan University. 

个人简介:刘党政,中国科学技术大学副教授。2010年博士毕业于北京大学,研究方向随机矩阵理论 。