浙江工业大学物理学院
 所在位置:首页 > 博学堂讲座
博学堂讲座
The general dual Orlicz-Minkowski problem for increasing functions (第390讲)
浏览量:1260    发布时间:2018-12-06 14:01:18

报告题目:The general dual Orlicz-Minkowski problem for increasing functions

报告人:叶德平 教授

报告时间:上午10:00--11:00

报告地点:理学楼 A 楼 二楼教师活动中心

 题目:The general dual Orlicz-Minkowski problem for increasing functions

 

报告人:叶德平 教授(加拿大Memorial University

报告时间:1213日(周四)上午10:00--11:00

报告地点:理学楼 A 楼 二楼教师活动中心

 

摘要:

The classical Minkowski problem and its $L_p$ extensions aim to find necessary and sufficient conditions for measure $mu$ defined on the unit sphere to be the $L_p$ surface area measures of some convex bodies.  Together with Gardner, Hug, Weil and Xing, we initiated the study of the general dual Orlicz-Minkowski problems, which are arguably the most generalized Minkowski problems containing the well-studied $L_p$ Minkowski problems and the $L_p$ dual Minkowski problems as special cases.

 

In this talk, I will introduce the general dual Orlicz curvature measures and talk about the existence of the solutions to the general dual Orlicz-Minkowski problems under certain conditions, in particular when the involving functions are increasing.

 

报告人简介:

叶德平教授于2009年博士毕业于美国Case Western Reserve University。 现任职于加拿大Memorial University, 并主持加拿大国家自然科学基金(NSERC) 项目。获得2017JMAA Ames奖。 长期从事凸几何分析, 几何和泛函不等式, 随机矩阵, 量子信息理论和统计学等领域的研究。主要研究课题包括:仿射表面积与极小几何表面积,仿射等周不等式,Minkowski 问题, 容量, 量子纠缠等。 已在国际著名杂志上发表论文近30篇。 其中代表作(G. AubrunS. Szarek合作) Entanglement thresholds for random induced states” 发表在国际顶级数学杂志 Comm. Pure Appl. Math. , 并且引起社会各界的广泛关注和讨论。关于该工作的新闻报道 “Einstein's 'spooky action' common in large quantum systems”,“Quantum entanglement isnt only spooky, you cant avoid it” 和 “Quantum entanglement common in large dimension” 曾在Google搜索中出现超过36万个搜索条。

博学堂讲座
The general dual Orlicz-Minkowski problem for increasing functions (第390讲)
浏览量:1260    发布时间:2018-12-06 14:01:18

报告题目:The general dual Orlicz-Minkowski problem for increasing functions

报告人:叶德平 教授

报告时间:上午10:00--11:00

报告地点:理学楼 A 楼 二楼教师活动中心

 题目:The general dual Orlicz-Minkowski problem for increasing functions

 

报告人:叶德平 教授(加拿大Memorial University

报告时间:1213日(周四)上午10:00--11:00

报告地点:理学楼 A 楼 二楼教师活动中心

 

摘要:

The classical Minkowski problem and its $L_p$ extensions aim to find necessary and sufficient conditions for measure $mu$ defined on the unit sphere to be the $L_p$ surface area measures of some convex bodies.  Together with Gardner, Hug, Weil and Xing, we initiated the study of the general dual Orlicz-Minkowski problems, which are arguably the most generalized Minkowski problems containing the well-studied $L_p$ Minkowski problems and the $L_p$ dual Minkowski problems as special cases.

 

In this talk, I will introduce the general dual Orlicz curvature measures and talk about the existence of the solutions to the general dual Orlicz-Minkowski problems under certain conditions, in particular when the involving functions are increasing.

 

报告人简介:

叶德平教授于2009年博士毕业于美国Case Western Reserve University。 现任职于加拿大Memorial University, 并主持加拿大国家自然科学基金(NSERC) 项目。获得2017JMAA Ames奖。 长期从事凸几何分析, 几何和泛函不等式, 随机矩阵, 量子信息理论和统计学等领域的研究。主要研究课题包括:仿射表面积与极小几何表面积,仿射等周不等式,Minkowski 问题, 容量, 量子纠缠等。 已在国际著名杂志上发表论文近30篇。 其中代表作(G. AubrunS. Szarek合作) Entanglement thresholds for random induced states” 发表在国际顶级数学杂志 Comm. Pure Appl. Math. , 并且引起社会各界的广泛关注和讨论。关于该工作的新闻报道 “Einstein's 'spooky action' common in large quantum systems”,“Quantum entanglement isnt only spooky, you cant avoid it” 和 “Quantum entanglement common in large dimension” 曾在Google搜索中出现超过36万个搜索条。