报告题目:The general dual Orlicz-Minkowski problem for increasing functions
报告人:叶德平 教授
报告时间:上午10:00--11:00
报告地点:理学楼 A 楼 二楼教师活动中心
题目:The general dual Orlicz-Minkowski problem for increasing functions
报告人:叶德平 教授(加拿大Memorial University)
报告时间:12月13日(周四)上午10:00--11:00
报告地点:理学楼 A 楼 二楼教师活动中心
摘要:
The classical Minkowski problem and its $L_p$ extensions aim to find necessary and sufficient conditions for measure $mu$ defined on the unit sphere to be the $L_p$ surface area measures of some convex bodies. Together with Gardner, Hug, Weil and Xing, we initiated the study of the general dual Orlicz-Minkowski problems, which are arguably the most generalized Minkowski problems containing the well-studied $L_p$ Minkowski problems and the $L_p$ dual Minkowski problems as special cases.
In this talk, I will introduce the general dual Orlicz curvature measures and talk about the existence of the solutions to the general dual Orlicz-Minkowski problems under certain conditions, in particular when the involving functions are increasing.
报告人简介:
叶德平教授于2009年博士毕业于美国Case Western Reserve University。 现任职于加拿大Memorial University, 并主持加拿大国家自然科学基金(NSERC) 项目。获得2017年JMAA Ames奖。 长期从事凸几何分析, 几何和泛函不等式, 随机矩阵, 量子信息理论和统计学等领域的研究。主要研究课题包括:仿射表面积与极小几何表面积,仿射等周不等式,Minkowski 问题, 容量, 量子纠缠等。 已在国际著名杂志上发表论文近30篇。 其中代表作(与G. Aubrun和S. Szarek合作) “Entanglement thresholds for random induced states” 发表在国际顶级数学杂志 Comm. Pure Appl. Math. 上, 并且引起社会各界的广泛关注和讨论。关于该工作的新闻报道 “Einstein's 'spooky action' common in large quantum systems”,“Quantum entanglement isn’t only spooky, you can’t avoid it” 和 “Quantum entanglement common in large dimension” 曾在Google搜索中出现超过36万个搜索条。

