报告题目:FRAMES INDUCED BY THE ACTION OF CONTINUOUS POWERS OF AN OPERATOR
报告人:黄龙秀 博士
报告时间:下午3:30—4:30
报告地点:理学楼 A 楼 110
报告题目:FRAMES INDUCED BY THE ACTION OF CONTINUOUS POWERS OF AN OPERATOR
报告时间:2018.06.23 (周六) 下午3:30—4:30
报告地点:理学楼 A 楼 110
报告人:黄龙秀 博士
摘要: We investigate systems of the form {A^t g : g ∈ G, t ∈ [0, L]} where A ∈ B(H) is a normal operator in a separable Hilbert space H, G ⊂ H is a count-able set, and L is a positive real number. The main goal of this work is to study the frame properties of {A^t g : g ∈ G, t ∈ [0, L]}. Specifically, we show that under some mild conditions, {A^t g}_{g in G; tin [0;L]} is a frame system in H if and only if there exists a finite discretization 0 = t0 < t1 < . . . < tn < tn+1 = L of [0, L] such that {A^ti g }_{ginG;i=fin{0;1,…,n}} is a frame in H. Additionally, we also found that when A is an in-vertible self-adjoint linear operator in H, then the frame properties of {A^t g}_{g in G; tin [0;L]} are independent of L.
本报告为综述性介绍报告,欢迎广大本科生、研究生前来参加。
报告人简介:
黄龙秀,女,博士。2008-2012年就读中山大学,师从许跃生教授做GPU的快速算法等相关研究;2012-2014年就读复旦大学,2014年赴美国Vanderbilt University攻读博士学位,师从Akram Aldroubi教授。研究方向为Dynamical sampling, image processing, geometric analysis, numerical linear algebra, high performance computing等。在SIAM Journal of Discrete Mathematics, 2017 International Conference on Sampling Theory and Applications (SampTA)等国际专业杂志发表论文,且有数篇论文在投。多次参加国际会议并给出会议报告或者海报。

