浙江工业大学物理学院
 所在位置:首页 > 博学堂讲座
博学堂讲座
FRAMES INDUCED BY THE ACTION OF CONTINUOUS POWERS OF AN OPERATOR (第354讲)
浏览量:1319    发布时间:2018-06-22 08:22:24

报告题目:FRAMES INDUCED BY THE ACTION OF CONTINUOUS POWERS OF AN OPERATOR

报告人:黄龙秀 博士

报告时间:下午3:30—4:30

报告地点:理学楼 A 楼 110

 
报告题目:FRAMES INDUCED BY THE ACTION OF CONTINUOUS POWERS OF AN OPERATOR
报告时间:2018.06.23 (周六) 下午3:30—4:30
 
报告地点:理学楼 A 110
 
报告人:黄龙秀 博士
摘要: We investigate systems of the form {A^t g : g ∈ G, t ∈ [0, L]} where A ∈ B(H) is a normal operator in a separable Hilbert space H, G ⊂ H is a count-able set, and L is a positive real number. The main goal of this work is to study the frame properties of {A^t g : g ∈ G, t ∈ [0, L]}. Specifically, we show that under some mild conditions, {A^t g}_{g in G; tin [0;L]} is a frame system in H if and only if there exists a finite discretization 0 = t0 < t1 < . . . < tn < tn+1 = L of [0, L] such that {A^ti g }_{ginG;i=fin{0;1,…,n}} is a frame in H. Additionally, we also found that when A is an in-vertible self-adjoint linear operator in H, then the frame properties of {A^t g}_{g in G; tin [0;L]} are independent of L.  
 
本报告为综述性介绍报告,欢迎广大本科生、研究生前来参加。
 
 
报告人简介:
 
    黄龙秀,女,博士。2008-2012年就读中山大学,师从许跃生教授做GPU的快速算法等相关研究;2012-2014年就读复旦大学,2014年赴美国Vanderbilt University攻读博士学位,师从Akram Aldroubi教授。研究方向为Dynamical sampling, image processing, geometric analysis, numerical linear algebra, high performance computing等。在SIAM Journal of Discrete Mathematics, 2017 International Conference on Sampling Theory and Applications (SampTA)等国际专业杂志发表论文,且有数篇论文在投。多次参加国际会议并给出会议报告或者海报。
 
博学堂讲座
FRAMES INDUCED BY THE ACTION OF CONTINUOUS POWERS OF AN OPERATOR (第354讲)
浏览量:1319    发布时间:2018-06-22 08:22:24

报告题目:FRAMES INDUCED BY THE ACTION OF CONTINUOUS POWERS OF AN OPERATOR

报告人:黄龙秀 博士

报告时间:下午3:30—4:30

报告地点:理学楼 A 楼 110

 
报告题目:FRAMES INDUCED BY THE ACTION OF CONTINUOUS POWERS OF AN OPERATOR
报告时间:2018.06.23 (周六) 下午3:30—4:30
 
报告地点:理学楼 A 110
 
报告人:黄龙秀 博士
摘要: We investigate systems of the form {A^t g : g ∈ G, t ∈ [0, L]} where A ∈ B(H) is a normal operator in a separable Hilbert space H, G ⊂ H is a count-able set, and L is a positive real number. The main goal of this work is to study the frame properties of {A^t g : g ∈ G, t ∈ [0, L]}. Specifically, we show that under some mild conditions, {A^t g}_{g in G; tin [0;L]} is a frame system in H if and only if there exists a finite discretization 0 = t0 < t1 < . . . < tn < tn+1 = L of [0, L] such that {A^ti g }_{ginG;i=fin{0;1,…,n}} is a frame in H. Additionally, we also found that when A is an in-vertible self-adjoint linear operator in H, then the frame properties of {A^t g}_{g in G; tin [0;L]} are independent of L.  
 
本报告为综述性介绍报告,欢迎广大本科生、研究生前来参加。
 
 
报告人简介:
 
    黄龙秀,女,博士。2008-2012年就读中山大学,师从许跃生教授做GPU的快速算法等相关研究;2012-2014年就读复旦大学,2014年赴美国Vanderbilt University攻读博士学位,师从Akram Aldroubi教授。研究方向为Dynamical sampling, image processing, geometric analysis, numerical linear algebra, high performance computing等。在SIAM Journal of Discrete Mathematics, 2017 International Conference on Sampling Theory and Applications (SampTA)等国际专业杂志发表论文,且有数篇论文在投。多次参加国际会议并给出会议报告或者海报。