报告题目:Soliton solution to the nonlocal NLS and coupled NLS equations with zero and nonzero boundary conditions
报告人:Baofeng Feng
报告时间:1:20-2:40 PM
报告地点: 理A二楼师生活动中心
报告题目:Soliton solution to the nonlocal NLS and coupled NLS equations with zero and nonzero boundary conditions
报告人: Baofeng Feng
报告时间地点: 2018.05.29 1:20-2:40 PM, 理A二楼师生活动中心
摘要:We consider general soliton solution to a nonlocal nonlinear Schrodinger (NLS) equation and coupled NLS equation for both zero and nonzero boundary conditions. Based on the combination of Hirota's bilinear method and the Kadomtsev-Petviashvili (KP) hierarchy reduction method, we firstly construct general N-soliton solution for zero boundary condition starting from the tau functions of the two-component KP hierarchy. Then, from the tau functions of the single component KP hierarchy, we construct general soliton solutions to the nonlocal NLS and coupled NLS equations with nonzero boundary conditions.
This is a joint work with Mark Ablowitz (University of Colorado, Boulder), Xudan Luo (CUNY-Buffalo) and Ziad Musslimani (Florida State Univ.).
Baofeng Feng(冯宝峰)教授毕业于清华大学,获物理学及数学双学士学位,后获得京都大学博士学位,现任得克萨斯大学UTRGV数学与统计学院终身教授。冯博士在应用与计算数学领域建树颇丰,研究兴趣主要包括非线性波及其在流体力学与非线性光学中的应用,连续与离散可积系统以及PDE的数值解法。冯教授至今已在国际知名期刊上发表学术论文70余篇,曾获6项来自美国国家科学基金、中国国家自然科学基金委员会海外及港澳学者合作研究基金、美国国防部及陆军研究局的项目资助。冯博士分别于2007年2012年两次荣获日本学术振兴会Research Fellow访问东京大学、京都大学、早稻田大学等,组织国际会议四次及国际会议专题30余次。

