浙江工业大学物理学院
 所在位置:首页 > 博学堂讲座
博学堂讲座
Integrable deformed spatial discrete modified KdV equation with nonholonomic constraint (第301讲)
浏览量:1336    发布时间:2018-04-10 18:31:00

报告题目:Integrable deformed spatial discrete modified KdV equation with nonholonomic constraint

报告人:赵海琼副教授

报告时间:上午11:00-12:00

报告地点:理A110

 

报告题目:Integrable deformed spatial discrete modified KdV equation with nonholonomic constraint

报告时间:2018.04.12  (周四) 上午11:00-12:00

 

报告地点:理A110

 

报告人:赵海琼副教授 (上海对外经贸大学)

摘要:In this talk, a spatial discretization of the integrable deformed mKdV equation with nonholonomic constraint is investigated. The integrability of the discrete model is confirmed by showing the existence of Lax pair, Darboux transformations and multi-solitons. The theory of the system including Lax pair, Darboux transformations and explicit solutions systematically yields their continuous counterparts in the continuous limit. Finally, under the reduction, the deformed model gives an integrable discretization of the combined mKdV and Sine-Gorden equation.

 

报告人简介: 

 

赵海琼,上海对外经贸大学副教授,主要从事孤立子与可积系统理论及其应用方面的研究工作。在重要学术期刊如J. Nonlinear. Sci.,  J. Phys. A,  Chaos,  J. Math. Phys,  Stud. Appl. Math. 等上发表学术论文20余篇。

 

博学堂讲座
Integrable deformed spatial discrete modified KdV equation with nonholonomic constraint (第301讲)
浏览量:1336    发布时间:2018-04-10 18:31:00

报告题目:Integrable deformed spatial discrete modified KdV equation with nonholonomic constraint

报告人:赵海琼副教授

报告时间:上午11:00-12:00

报告地点:理A110

 

报告题目:Integrable deformed spatial discrete modified KdV equation with nonholonomic constraint

报告时间:2018.04.12  (周四) 上午11:00-12:00

 

报告地点:理A110

 

报告人:赵海琼副教授 (上海对外经贸大学)

摘要:In this talk, a spatial discretization of the integrable deformed mKdV equation with nonholonomic constraint is investigated. The integrability of the discrete model is confirmed by showing the existence of Lax pair, Darboux transformations and multi-solitons. The theory of the system including Lax pair, Darboux transformations and explicit solutions systematically yields their continuous counterparts in the continuous limit. Finally, under the reduction, the deformed model gives an integrable discretization of the combined mKdV and Sine-Gorden equation.

 

报告人简介: 

 

赵海琼,上海对外经贸大学副教授,主要从事孤立子与可积系统理论及其应用方面的研究工作。在重要学术期刊如J. Nonlinear. Sci.,  J. Phys. A,  Chaos,  J. Math. Phys,  Stud. Appl. Math. 等上发表学术论文20余篇。