报告题目:The existence of Kahler-Einstein metrics on K-polystable Q-Fano varieties with non-positive discrepancies
报告人:王枫
报告时间: 14:30-15:30
报告地点:理 A 二楼 教师活动中心
题目:The existence of Kahler-Einstein metrics on K-polystable Q-Fano varieties with non-positive discrepancies
报告人:王枫(浙江大学)
时间:1月5日 14:30-15:30
地点:理 A 二楼 教师活动中心
摘要:We will prove the YTD's conjecture for $Q-$Fano varieties X which has a log smooth resolution $M$ with non-positive discrepancies. At first, we extend Tian's work to the log smooth case. After proving the log K-stability, we get the existence of conic KE metrics on $M$. Then we show that these metrics converges to the singular KE metric on X.This is a joint work with Professsor Tian and Chi Li.
个人简介:王枫,浙江大学副教授,硕导。2014年北京大学博士毕业,导师朱小华教授。研究方向是复几何和辛几何,在国际著名杂志 Adv Math, IMRN 等杂志上发表论文多篇。
报告人:王枫(浙江大学)
时间:1月5日 14:30-15:30
地点:理 A 二楼 教师活动中心
摘要:We will prove the YTD's conjecture for $Q-$Fano varieties X which has a log smooth resolution $M$ with non-positive discrepancies. At first, we extend Tian's work to the log smooth case. After proving the log K-stability, we get the existence of conic KE metrics on $M$. Then we show that these metrics converges to the singular KE metric on X.This is a joint work with Professsor Tian and Chi Li.
个人简介:王枫,浙江大学副教授,硕导。2014年北京大学博士毕业,导师朱小华教授。研究方向是复几何和辛几何,在国际著名杂志 Adv Math, IMRN 等杂志上发表论文多篇。

