浙江工业大学物理学院
 所在位置:首页 > 博学堂讲座
博学堂讲座
FLOW BY GAUSS CURVATURE TO THE ALEKSANDROV AND DUAL MINKOWSKI PROBLEMS (第245讲)
浏览量:1443    发布时间:2017-05-09 16:03:54

报告题目:FLOW BY GAUSS CURVATURE TO THE ALEKSANDROV AND DUAL MINKOWSKI PROBLEMS

报告人:盛为民 教授

报告时间:15:20--16:20

报告地点:理A110

题目:FLOW BY GAUSS CURVATURE TO THE ALEKSANDROV AND DUAL MINKOWSKI PROBLEMS

报告人:盛为民 教授 ( 浙江大学)


报告时间:5月17日(周三)15:20--16:20
报告地点:理学楼 A 楼 110

摘要:In this talk, I will introduce our recent work on Gauss curvature flow with Xu-Jia Wang and Qi-Rui Li. In this work we study a contracting flow of closed, convex hypersurfaces in the Euclidean space $R^{n+1}$ with the speed $f r^{alpha} K$, where $K$ is the Gauss curvature, $r$ is the distance from the hypersurface to the origin,and $f$ is a positive and smooth function. We prove that if $alphage n+1$, the flow exists for all time and converges smoothly after normalization to a hypersurface,which is a sphere if $fequiv 1$.  Our  argument provides a new proof for the classical Aleksandrov problem  ($alpha = n+1$) and resolves the dual q-Minkowski problem introduced by Huang, Lutwak, Yang and Zhang recently, for the case q


报告人简历:
盛为民,浙江大学数学学院教授。主要研究兴趣在于具有一定几何或物理背景的微分几何和偏微分方程,包括预定曲率问题,共形几何和 k-Yamabe 问题,以及曲率流问题。其发表高水平数学论文30余篇,在诸如 Duke math. J., J.Diff.Geom., IMRN, CVPDE等一流杂志上。
 

博学堂讲座
FLOW BY GAUSS CURVATURE TO THE ALEKSANDROV AND DUAL MINKOWSKI PROBLEMS (第245讲)
浏览量:1443    发布时间:2017-05-09 16:03:54

报告题目:FLOW BY GAUSS CURVATURE TO THE ALEKSANDROV AND DUAL MINKOWSKI PROBLEMS

报告人:盛为民 教授

报告时间:15:20--16:20

报告地点:理A110

题目:FLOW BY GAUSS CURVATURE TO THE ALEKSANDROV AND DUAL MINKOWSKI PROBLEMS

报告人:盛为民 教授 ( 浙江大学)


报告时间:5月17日(周三)15:20--16:20
报告地点:理学楼 A 楼 110

摘要:In this talk, I will introduce our recent work on Gauss curvature flow with Xu-Jia Wang and Qi-Rui Li. In this work we study a contracting flow of closed, convex hypersurfaces in the Euclidean space $R^{n+1}$ with the speed $f r^{alpha} K$, where $K$ is the Gauss curvature, $r$ is the distance from the hypersurface to the origin,and $f$ is a positive and smooth function. We prove that if $alphage n+1$, the flow exists for all time and converges smoothly after normalization to a hypersurface,which is a sphere if $fequiv 1$.  Our  argument provides a new proof for the classical Aleksandrov problem  ($alpha = n+1$) and resolves the dual q-Minkowski problem introduced by Huang, Lutwak, Yang and Zhang recently, for the case q


报告人简历:
盛为民,浙江大学数学学院教授。主要研究兴趣在于具有一定几何或物理背景的微分几何和偏微分方程,包括预定曲率问题,共形几何和 k-Yamabe 问题,以及曲率流问题。其发表高水平数学论文30余篇,在诸如 Duke math. J., J.Diff.Geom., IMRN, CVPDE等一流杂志上。