浙江工业大学物理学院
 所在位置:首页 > 博学堂讲座
博学堂讲座
Estimates of fractional integral operator with variable kernel (带变量核分数次积分算子的估计) (第231讲)
浏览量:1296    发布时间:2017-03-24 15:04:58

报告题目:Estimates of fractional integral operator with variable kernel (带变量核分数次积分算子的估计)

报告人:郑涛涛

报告时间:下午15:30-16:30

报告地点:广B206



题目:Estimates of fractional integral operator with variable kernel (带变量核分数次积分算子的估计)

 

摘要:  In this report, we use interpolation and iterative methods to study the fractional integral operator FΩ,α with variable kernel. We obtain the sharp size condition on Ω to ensure the (Lq,Lp) boundedness of FΩ,α for 0< α < n, 1 < p < ∞. We also obtain some corresponding estimates of the rough bilinear fractional integral. By Fourier transform estimates and a method of approximation, we prove that the commutator FΩ,α,b, which is generated by FΩ,α with a function b ∈ n+2α CMO(Rn), is compact from L 2n (Rn) to L2(Rn).

.
时间:3月27日(星期一)下午15:30-16:30
地点:广B206 
 
报告人:  郑涛涛,浙江科技学院理学院调和分析研究团队成员。2015浙江大学理学博士学位,主要研究方向为PDE与调和分析技术、奇异积分算子的有界性。相关结果已在Electron. J. Differential Equations, Ann. Funct. Anal., J. Funct. Spaces等国内外数学杂志发表。
博学堂讲座
Estimates of fractional integral operator with variable kernel (带变量核分数次积分算子的估计) (第231讲)
浏览量:1296    发布时间:2017-03-24 15:04:58

报告题目:Estimates of fractional integral operator with variable kernel (带变量核分数次积分算子的估计)

报告人:郑涛涛

报告时间:下午15:30-16:30

报告地点:广B206



题目:Estimates of fractional integral operator with variable kernel (带变量核分数次积分算子的估计)

 

摘要:  In this report, we use interpolation and iterative methods to study the fractional integral operator FΩ,α with variable kernel. We obtain the sharp size condition on Ω to ensure the (Lq,Lp) boundedness of FΩ,α for 0< α < n, 1 < p < ∞. We also obtain some corresponding estimates of the rough bilinear fractional integral. By Fourier transform estimates and a method of approximation, we prove that the commutator FΩ,α,b, which is generated by FΩ,α with a function b ∈ n+2α CMO(Rn), is compact from L 2n (Rn) to L2(Rn).

.
时间:3月27日(星期一)下午15:30-16:30
地点:广B206 
 
报告人:  郑涛涛,浙江科技学院理学院调和分析研究团队成员。2015浙江大学理学博士学位,主要研究方向为PDE与调和分析技术、奇异积分算子的有界性。相关结果已在Electron. J. Differential Equations, Ann. Funct. Anal., J. Funct. Spaces等国内外数学杂志发表。