浙江工业大学物理学院
 所在位置:首页 > 博学堂讲座
博学堂讲座
Poisson semigroup of Schrodinger operators and BMO^\alpha spaces (第106讲)
浏览量:1547    发布时间:2015-06-02 08:43:50

报告题目:Poisson semigroup of Schrodinger operators and BMO^\alpha spaces

报告人:张超 博士

报告时间:下午3:30-4:30

报告地点:语林楼413

主题: Poisson semigroup of Schrodinger operators and BMO^alpha spaces
主讲人:张超   博士
时间: 6月9日 下午3:30-4:30
地点: 语林楼413
摘要: Let L be a Schrodinger operator of the form L=-Delta +V. After some original works in 1995 and 2005, lots of results related to this kind Schrodinger oprator are developed. In our talk, we will talk about some results we got recently. Using the method of L-harmonic extensions we study the regularity estimates at the scale of adapted BMO^alpha spaces (or Holder spaces). We will also show that a function in BMO^alpha space related to L is the trace of the solution of the Dirichlet problem related to L with this function being the boundary values. This extends the analogous characterization founded by Fabes, Johnson and Neri for the classical BMO space.
主讲人简介:
张超, 浙江工商大学数学系教师。2012年先后获得西班牙马德里自治大学、武汉大学博士学位。主要从事调和分析、泛函分析方面的研究工作。在J. Functional Analysis、 J. Math. Anal. Appl.、中国科学等国内外期刊发表SCI论文近十篇。目前,主持国家自然科学基金、浙江省自然科学基金各一项
博学堂讲座
Poisson semigroup of Schrodinger operators and BMO^\alpha spaces (第106讲)
浏览量:1547    发布时间:2015-06-02 08:43:50

报告题目:Poisson semigroup of Schrodinger operators and BMO^\alpha spaces

报告人:张超 博士

报告时间:下午3:30-4:30

报告地点:语林楼413

主题: Poisson semigroup of Schrodinger operators and BMO^alpha spaces
主讲人:张超   博士
时间: 6月9日 下午3:30-4:30
地点: 语林楼413
摘要: Let L be a Schrodinger operator of the form L=-Delta +V. After some original works in 1995 and 2005, lots of results related to this kind Schrodinger oprator are developed. In our talk, we will talk about some results we got recently. Using the method of L-harmonic extensions we study the regularity estimates at the scale of adapted BMO^alpha spaces (or Holder spaces). We will also show that a function in BMO^alpha space related to L is the trace of the solution of the Dirichlet problem related to L with this function being the boundary values. This extends the analogous characterization founded by Fabes, Johnson and Neri for the classical BMO space.
主讲人简介:
张超, 浙江工商大学数学系教师。2012年先后获得西班牙马德里自治大学、武汉大学博士学位。主要从事调和分析、泛函分析方面的研究工作。在J. Functional Analysis、 J. Math. Anal. Appl.、中国科学等国内外期刊发表SCI论文近十篇。目前,主持国家自然科学基金、浙江省自然科学基金各一项